LHC resonance searches in *ttZ* final state

Bithika Jain

Korea Institute for Advanced Study

Work in progress with Mihailo Backovic (CP3 Louvain), Thomas Flacke (IBS -CTPU), Seung Lee (Korea University)

KIAS Workshop, 2016

Gibs

Why $t\bar{t}Z$ final state?

- Exotic Searches at ATLAS and CMS look for BSM vector resonances.
- Main focus on signatures of "bumps" in invariant mass spectra of two SM final states (pairs of leptons, jets, top quarks, γ ,W,Z)

- What if decay into non SM pairs dominates?
- Search strategy chosen so far by LHC experiments might be incomplete and can potentially be improved in an essential manner

Phenomenological models with non standard decay modes

- Models with $t' + G'_{\mu}$ @ Tevatron [Dobrescu et. al (2009), Kong et. al (2011)] with (Wj)(Wj), $t\bar{t}h$ and multi-lepton final states
- CHMs with non-standard G' signals i.e $t\bar{t} + X$ @ early LHC [Chala et. al. (2014)] elude existing search strategies aimed at the RS-like KK gluon, composite Higgs models or their close variants.
- Broad **Neutral EW** resonance in CHMs, $\rho_o \rightarrow X_{5/3}X_{5/3} \rightarrow SS2l @$ LHC Run II (recast of QCD top partner pair production@CMS)[Barducci et al (2015)]
- EW resonance, $W' \rightarrow X_{5/3} X_{2/3}$ (@SS2*l*)and T'b [Vignaroli (2014)]

Disclaimer: not a comprehensive list

Status of heavy resonances

• QCD pair and single production of top partners

[Matsedonskyi et al. '12]

[comprehensive review see Panico, Wulzer '15, Csaki, Grojean, Terning'15]

- a reasonably tuned composite Higgs generically requires, $M_{T} \sim TeV$
- ATLAS, CMS ICHEP '16 exotic results push, $M_{T} \sim 950 \text{ GeV}$
- DY and VBF (subleading) production of vector resonances (ρ 's)

- EWPT pushes $M_{\rho} > 2-3$ TeV [Contino and Salvarezza '15]
- If kinematically allowed ρ decays to top partners become dominant
- Top partner production processes via ρ_0 (celebraterd Z') become viable

Search Strategy @ LHC run II

- T' decays into a top (bottom) quark and a h (W boson) also possible
- Complementary probes of new physics scenarios.

Sample model: 2-site Composite Higgs Model

[Panico, Wulzer'11, Matsedonskyi, Wulzer'12]

- Simplified version of a 5D model with $SO(5) \rightarrow SO(4)$ breaking
- EW SM gauge fields linear combination of the elementary group $SU(2)_L \times U(1)_Y \subset SO(5)_L$ and the analogous subgroup inside $SO(5)_R$
- Heavy vector bosons contain the **neutral state**, ρ_o , in the $SU(2)_L$ triplet.
- Elementary fermions q_L and t_R embedded in Q_L and T_R which are **incomplete fiveplets** of $SO(5)_L$
- Top partners implemented in a five plet of $SO(5)_R$, we focus on lightest 2/3 charged top partner, $T_{f,1}$

Details of benchmark models

$$g_{
ho} = 3.5, \ f = 808 \text{ GeV}, \ m_{
ho} = 2035 \text{ GeV}, \ M_1 = 20 \text{ TeV}, \ s_{L,q} = 0.1$$

- Choice of *f* satisfies bound *f* > 800 GeV from higgs couplings (High Lumi LHC projections)
- with $g_{\rho} = 3.5 \Longrightarrow m_{\rho} = 2035 \text{ GeV} \sim 2 \text{ TeV}$
- $s_{L,q} = 0.1$ (bound on light-quark compositeness)
- $M_1 = 20 \text{ TeV} \rightarrow \text{simplifies the } 2/3 \text{ top partner mass spectra, decouples the } 3^{\text{rd}}$ partner $SP1 \mid SP2 \mid SP3$

	SP1	SP2	SP3
$M_4 \; [\text{GeV}]$	1000	970	1030
y_R	10	11	11
$M_{T_{f1}}[{\rm GeV}]$	1020	990	1050

• 3 different choices of M_4 and y_R illustrate 3 scenarios

$$\begin{array}{ll} i. & M_{T_{f1}} \sim \frac{m_{\rho_0}}{2} \\ ii. & M_{T_{f1}} < \frac{m_{\rho_0}}{2} \\ iii. & M_{T_{f1}} > \frac{m_{\rho_0}}{2} \end{array} \end{array}$$

Benchmark Models

 $g_{\rho} = 3.5, f = 808 \text{ GeV}, m_{\rho} = 2035 \text{ GeV}, M_1 = 20 \text{ TeV}, s_{L,q} = 0.1$

	SP1	SP2	SP3
$M_4 \; [\text{GeV}]$	1000	970	1030
y_R	10	11	11

Collider Phenomenology

- $t\bar{t}Z$ final state is highly boosted easy reconstruction
- MG_aMC for event generation at parton level
- PYTHIA 6 to shower the events
- Impose cut of $H_T > 800$ GeV on the hard processes level to increase statistics in background event samples.
- Cluster showered events using FASTJET implementation of anti- \mathbf{k}_{T} algorithm
 - R= 1.5 jet cone for "fat jet" (CMS top tagging)
 - r= 0.4 for b-tagging
- Simplified b, Z and top tagging weighted by appropriate tagging efficiencies

discoverable @ LHC13 in the $Z \rightarrow ll$ channel

 $S/\sqrt{B} (30 f b^{-1}) - 6.5$ $S/\sqrt{B} (100 f b^{-1}) - 11.8$

- Background: SM Z+jets
- $j_{1,2}$ hardest and second hardest R=1.5 jets
- Z sum of 2 hardestleptons ($l_{1,2}$)
- Assumptions: no pileup, detector simulation or top tagging

Distribution of signal and background in m_{23} , m_{123} plane

 $m_{23}~{
m (invariant\ mass\ of\ second\ hardest\ top\ and\ Z\)}$ Bithika Jain

$Z \rightarrow l^+ l^-$	$\sigma(\text{SP1})$	$\sigma(SP2)$	$\sigma(\text{SP3})$	$\sigma(Z+\text{jets})$
Preselection	0.64	0.64	0.64	326
$p_T^Z > 300 \mathrm{GeV}$	0.48	0.46	0.49	254
$p_T^{j_{1,2}} > 400,300 \mathrm{GeV}$	0.38	0.36	0.39	38
CMS top tag	0.098	0.090	0.098	$9.5 imes 10^{-3}$
$m_{23} > 800 \mathrm{GeV}$	0.074	0.074	0.074	3.5×10^{-3}
$m_{123} > 1.8 \mathrm{TeV}$	0.066	0.066	0.066	2.9×10^{-3}
S/B	20	20	20	
$\sqrt{S}/\sqrt{B}(30{\rm fb}^{-1})$	6.5	6.5	6.5	>
$S/\sqrt{B}(100{\rm fb}^{-1})$	11.8	11.8	11.8	

Table 2. Example cutflow for the $t\bar{t}Z$ resonance search in the $Z \to l^+l^-$ channel, assuming the t, \bar{t} quarks decay hadronically. All samples assume a $H_T > 800 \text{ GeV}$ cut at the event generator level. All cross section values are in fb. The background cross section includes an NLO K-factor of 1.3.

Event cross section is 8 times bigger than $Z \rightarrow ll$

Background: SM $t\bar{t}$ +jets, W+jets (more background than previous search)

 $S/\sqrt{B} (100 f b^{-1}) - 2.5$ $S/\sqrt{B} (300 f b^{-1}) - 4.3$

Poor performance! ($t\bar{t}$ +jets rejection power low because of inferior Z boson tagging)

$(Z \rightarrow jj), 1l, \not \!\! E_T$	$\sigma({ m SP1})$	$\sigma(\text{SP2})$	$\sigma(SP3)$	$\sigma(t\bar{t}+jets)$	$\sigma(W+\text{jets})$
Preselection	0.99	0.99	0.99	197	2.0
$p_T^{t_{1,2}} > 500, 400 \mathrm{GeV}$	0.57	0.56	0.56	23	0.45
$\not\!\!\!E_T>100{\rm GeV}$	0.46	0.46	0.46	18	0.23
$p_T^Z > 300 \mathrm{GeV}$	0.38	0.37	0.37	10	0.14
CMS top tag	0.19	0.18	0.19	4.8	< 0.01
CMS Z tag	0.094	0.091	0.094	0.14	< 0.01
$m_{23} > 800 \mathrm{GeV}$	0.088	0.087	0.087	0.13	< 0.01
$m_{123} > 1.8 \mathrm{TeV}$	0.086	0.084	0.086	0.12	< 0.01
S/B	0.72	0.72	0.72		
$S/\sqrt{B}(100{\rm fb}^{-1})$	2.5	2.5	2.5		
$S/\sqrt{B}(300{\rm fb}^{-1})$	4.3	4.3	4.3		

Table 3. Example cutflow for channels with 1 hard lepton and missing energy. All samples assume a $H_T > 800 \text{ GeV}$ cut at the event generator level. All cross section values are in fb. We use conservative K-factors of 2 and 1.3 respectively for the $t\bar{t}$ and W+jets background.

Summary

- Past LHC searches for neutral vector resonances have mainly focused on two body resonance decays
- Absence of signal in resonance searches & mass limits $\sim O(TeV)$
- Low resonance decay BR into two body final states (@LHC)
- Vector resonance, ρ_0 decay to $t\bar{t}Z$ can dominate
- $Z \rightarrow l^+l^-$ scenario is very promising (other final states also explored).
- **Benchmark model points** we consider could be **discovered** at LHC13 with as little as **30 fb⁻¹ of integrated luminosity**.
- **New search strategies** can aid in **hunting** heavy vector resonances and top partners.

THANK YOU!

Backup

Features of Gauge sector

[Panico, Wulzer'11, Matsedonskyi, Wulzer'12]

 \mathcal{U} : Goldstone matrix

SM gauge fields \rightarrow combination of elementary, W_{μ} , B_{μ} and composite $\tilde{\rho}_{\mu}$ - partial compositeness

[Kaplan (1991), Contino, Kramer, Son and Sundrum (2006)]

• q_L and t_R embedded in Q_L and T_R which are **incomplete fiveplets**

$$Q_L = \frac{1}{\sqrt{2}} \begin{bmatrix} -t \ D_L \\ -b_L \\ -it_L \\ t_L \\ 0 \end{bmatrix}, \ T_R = \begin{bmatrix} 0 \\ 0 \\ 0 \\ t_R \end{bmatrix}$$

• $\psi \in (\mathbf{2}, \mathbf{2}) \oplus (\mathbf{1}) = \begin{pmatrix} T & X_{5/3} \\ B & X_{2/3} \end{pmatrix} \oplus (\tilde{T})$

• Elementary and composite sector kinetic Lagrangians is

$$\mathcal{L}_{el}^{f} = i\overline{q}_{L}\gamma^{\mu}D_{\mu}q_{L} + i\overline{t}_{R}\gamma^{\mu}D_{\mu}t_{R},$$

$$\mathcal{L}_{cs}^{f} = i\overline{\widetilde{\psi}}\gamma^{\mu}D_{\mu}\widetilde{\psi} + \underbrace{\widetilde{m}}^{IJ}\overline{\widetilde{\psi}}_{I}\widetilde{\psi}_{J},$$

Mass term, $\widetilde{m} = diag(M_{4}, M_{1})$

Partially Composite vectors : Mass and couplings

Partially Composite fermions : Mass and couplings

SM vs non SM decay

 $m_{\rho} \sim 2 \ TeV$, $m_T \geq 1.5 \ TeV$ (Set 1) \Rightarrow Single Top partner production occurs but SM like final states (diboson) dominates

SM vs non SM decay

 $m_{
ho} \sim 2 \ TeV$, $m_T \geq 1 \ TeV$ (Set 2,3) \Rightarrow Top partner pair production allowed, single top partner production dominates

kinematic distributions of the signal and background events for SP3

- Background: SM Z+jets
- *j*_{1,2} hardest and second hardest R=1.5 jets
- Z sum of 2 hardestleptons ($l_{1,2}$)
- Assumptions: no pileup, detector simulation or top tagging

$Z \rightarrow l^+ l^-$	$\sigma(\text{SP1})$	$\sigma(SP2)$	$\sigma(SP3)$	$\sigma(Z+\text{jets})$
Preselection	0.64	0.64	0.64	326
$p_T^Z > 300 \mathrm{GeV}$	0.48	0.46	0.49	254
$p_T^{j_{1,2}} > 400,300 \mathrm{GeV}$	0.38	0.36	0.39	38
CMS top tag	0.098	0.090	0.098	$9.5 imes 10^{-3}$
$m_{23} > 800 \mathrm{GeV}$	0.074	0.074	0.074	3.5×10^{-3}
$m_{123} > 1.8 \mathrm{TeV}$	0.066	0.066	0.066	2.9×10^{-3}
S/B	20	20	20	
$S/\sqrt{B}(30{\rm fb}^{-1})$	6.5	6.5	6.5	
$S/\sqrt{B}(100{\rm fb}^{-1})$	11.8	11.8	11.8	

Table 2. Example cutflow for the $t\bar{t}Z$ resonance search in the $Z \to l^+l^-$ channel, assuming the t,\bar{t} quarks decay hadronically. All samples assume a $H_T > 800 \text{ GeV}$ cut at the event generator level. All cross section values are in fb. The background cross section includes an NLO K-factor of 1.3.

Event cross section is 8 times bigger than $Z \rightarrow ll$

Background: SM $t\bar{t}$ +jets, W+jets (more background than previous search)

 $S/\sqrt{B} (100 f b^{-1}) - 2.5$ $S/\sqrt{B} (300 f b^{-1}) - 4.3$

Poor performance! ($t\bar{t}$ +jets rejection power low because of inferior Z boson tagging)

$(Z \rightarrow jj), 1l, \not \!\! E_T$	$\sigma({ m SP1})$	$\sigma(\text{SP2})$	$\sigma(SP3)$	$\sigma(t\bar{t}+jets)$	$\sigma(W+\text{jets})$
Preselection	0.99	0.99	0.99	197	2.0
$p_T^{t_{1,2}} > 500, 400 \mathrm{GeV}$	0.57	0.56	0.56	23	0.45
$\not\!\!\!E_T>100{\rm GeV}$	0.46	0.46	0.46	18	0.23
$p_T^Z > 300 \mathrm{GeV}$	0.38	0.37	0.37	10	0.14
CMS top tag	0.19	0.18	0.19	4.8	< 0.01
CMS Z tag	0.094	0.091	0.094	0.14	< 0.01
$m_{23} > 800 \mathrm{GeV}$	0.088	0.087	0.087	0.13	< 0.01
$m_{123} > 1.8 \mathrm{TeV}$	0.086	0.084	0.086	0.12	< 0.01
S/B	0.72	0.72	0.72		
$S/\sqrt{B}(100{\rm fb}^{-1})$	2.5	2.5	2.5		
$S/\sqrt{B}(300{\rm fb}^{-1})$	4.3	4.3	4.3		

Table 3. Example cutflow for channels with 1 hard lepton and missing energy. All samples assume a $H_T > 800 \text{ GeV}$ cut at the event generator level. All cross section values are in fb. We use conservative K-factors of 2 and 1.3 respectively for the $t\bar{t}$ and W+jets background.

Tagging efficiencies

• b-tagging benchmark of

$$\epsilon_b = 0.70$$
, $\epsilon_c = 0.18$, $\epsilon_j = 0.017$,

where $\epsilon_{b,c,j}$ are the probabilities that a b, c or light jet will be tagged as a b-jet.

- Boosted top tagging $\epsilon_t = 0.5$, $\epsilon_j = 0.005$,
- Z boson tagging

$$\epsilon_Z = 0.5, \quad \epsilon_j = 0.03$$

where $\epsilon_{Z,j}$ are the probabilities that a Z boson or a light jet will be tagged as Z boson respectively. Note that the top tagging efficiencies include fat jet b-tagging.